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Chapter 1

The Euclidean space Rn

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space Rn.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

N the natural numbers {1, 2, 3, 4, . . .},
Z the integers, i.e., signed whole numbers {. . . , −2, −1, 0, 1, 2, . . .},
Q the rational numbers a

b
with a ∈ Z and b ∈ N,

R the real numbers,
C the complex numbers,

An open interval is an interval that does not include its boundary points and is
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6 CHAPTER 1. THE EUCLIDEAN SPACE Rn

denoted by parentheses. The open intervals are thus one of the forms

(a, b) = {x ∈ R : a < x < b},

(−∞, b) = {x ∈ R : x < b},

(a, +∞) = {x ∈ R : a < x},

(−∞, +∞) = R,

where a and b are real numbers with a ⩽ b. The interval (a, a) = ∅ is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

[a, b] = {x ∈ R : a ⩽ x ⩽ b},

(−∞, b] = {x ∈ R : x ⩽ b},

[a, +∞) = {x ∈ R : a ⩽ x},

(−∞, +∞) = R,

Closed intervals are closed sets in the topology of R. Note that the interval R =
(−∞, +∞) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a, b] = {x ∈ R : a < x ⩽ b},

[a, b) = {x ∈ R : a ⩽ x < b},

Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a, b], [a, b), (a, b], (a, b) for a, b ∈ R with a ⩽ b are called

bounded intervals, whereas intervals like (−∞, b], (−∞, b), [a, +∞), and (a, +∞) are
unbounded intervals.

1.1 The vector space Rn

Given a positive integer n, the set Rn is defined as the set of all ordered n-tuples
(x1, . . . , xn) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Euclidean space.

We can represent an element of Rn either as an n-tuple, which is the same as a row
vector with n entries,

x = (x1, . . . , xn)

or as a column vector with n entries

x =


x1
...

xn

 .
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Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of Rn in calculations, and row vectors to denote
elements of Rn as input parameters of functions defined on Rn.

There are also different ways in which elements in Rn are denoted, the three most
common are

x, x, and x⃗.

In this text, we will predominantly use x for elements in R and x for elements in Rn

for n ⩾ 2.
The set Rn is an n-dimensional inner product vector space over the real numbers.

This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on Rn is defined coordinate wise
by

x + y =


x1
...

xn

+


y1
...

yn

 =


x1 + y1

...
xn + yn

 .

The multiplication of an element x ∈ Rn by a scalar λ ∈ R is defined as

λx = λ


x1
...

xn

 =


λx1

...
λxn

 .

The way in which addition and multiplication on Rn interact is described by the
distributive law, which asserts that

λ(x + y) = λx + λy. (Distributive Law)

The vector space Rn is also equipped with a scalar product ⟨·, ·⟩ : Rn × Rn → R
defined as

⟨x, y⟩ =
n∑

k=1
xkyk.

The scalar product satisfies the three following properties:
1. Positive-definiteness: ⟨x, x⟩ ⩾ 0 for all x ∈ Rn, with equality only for x = 0.
2. Symmetry: ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ Rn.
3. Bilinearity: ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩ for all x, y, z ∈ Rn and α, β ∈ R.
In linear algebra, a vector x is also an n × 1 matrix. Its transpose, written x⊤ =

(x1, . . . , xn), is therefore a 1 × n matrix, and we can interpret the scalar product of
two vectors x, y as the matrix product of x⊤ and y:

⟨x, y⟩ = x⊤y = (x1, . . . , xn) ·


y1
...

yn

 .
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1.2 The Euclidean distance on Rn

To be able to extend the analytical methods presented in Analysis 1 to the space Rn,
it is important to endow Rn with a topological structure. On R we have used the
absolute value to define a distance d(x, y) = |x − y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space Rn. To do so, we will introduce the concepts of a
norm and a metric.

Definition 1.1 (The Euclidean norm on Rn). The Euclidean norm on Rn is the
function ∥ · ∥2 : Rn → R defined by

∥x∥2 =
√

⟨x, x⟩ =
(

n∑
k=1

x2
k

) 1
2

. (1.1)

It measures the distance of the point x to the origin 0 = (0, . . . , 0).

Observe that in one dimension, the Euclidean norm of a real number is the same
as the absolute value of that number. In general, the Euclidean norm satisfies the
following properties:

1. Non-negativity: ∥x∥2 ⩾ 0 for all x ∈ Rn, with equlity if and only if x = 0.
2. Homogeneity: ∥λ · x∥2 = |λ| · ∥x∥2 for all λ ∈ R and x ∈ Rn.
3. Triangle inequality: ∥x + y∥2 ⩽ ∥x∥2 + ∥y∥2 for all x, y ∈ Rn.

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

|⟨x, y⟩| ⩽ ∥x∥2 ∥y∥2 (Cauchy-Schwarz)

The Euclidean norm ∥x∥2 also corresponds to the length of a vector x. The scalar
product ⟨x, y⟩ measures the angle between the two vectors x and y: if we designate θ
as the angle between x and y, then

⟨x, y⟩ = ∥x∥2∥y∥2 cos θ. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., θ = ±π/2, then ⟨x, y⟩ = 0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

∥x + y∥2
2 = ∥x∥2

2 + ∥y∥2
2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on Rn called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on Rn). The Euclidean distance on Rn is the
function d(., .) : Rn × Rn → [0, ∞) given by

d(x, y) := ∥x − y∥2 =
√

(x1 − y1)2 + . . . + (xn − yn)2. (1.2)

The Euclidean distance captures the natural distance between two points in Rn. It
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satisfies the following three properties:
1. Non-negativity: d(x, y) ⩾ 0 for all x, y ∈ Rn, with equality only when x = y.
2. Symmetry: d(x, y) = d(y, x).
3. Triangle inequality: d(x, y) ⩽ d(x, z) + d(y, z).

1.3 The topology on Rn

The Euclidean distance d(x, y) induces a topology on Rn which underpins all analytical
considerations on Rn. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on Rn are the so-called open balls.
Definition 1.3 (Open Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) < r}

is called the open ball of radius r centered at a.
Open balls are the mathematical conceptualization of “nearness” and an important

use of open balls is to topologically distinguish distinct points: if x, y ∈ Rn and x ̸= y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:
Definition 1.4 (Open set). A subset U ⊆ Rn is open if for any point x ∈ U there
exists ε > 0 such that the open ball B(x, ε) is contained in U .

The empty set ∅ and the space Rn are open. Also, as was already mentioned, any
open ball B(a, r) is an open set.
Example 1.1 (Open Sets in Rn).
1. If a < b are real numbers then the interval

(a, b) = {x ∈ R : a < x < b}

is an open set. Indeed, if x ∈ (a, b), simply take r = min{x − a, b − x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“1-dimensional ball” B(x, r) = {y ∈ R : |x − y| < r} is a subset of (a, b). This
proves that (a, b) is an open set.

2. The infinite intervals (a, ∞) and (−∞, b) are also open but the intervals

(a, b] = {x ∈ R : a < x ⩽ b} and [a, b] = {x ∈ R : a ⩽ x ⩽ b}

are not open sets.
3. The rectangle

(a, b) × (c, d) = {(x, y) ∈ R2 : a < x < b, c < y < d}
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is an open set.
The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C ⊆ Rn is closed if its complement Rn\C is
open.

The empty set ∅ and the space Rn are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R2\{(0, 0)} is not a closed set.

An example of a closed set is the closed ball.
Definition 1.6 (Closed Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) ⩽ r}

is called the closed ball of radius r centered at a. It is a closed set.
Example 1.2 (Closed Sets in Rn).
1. The closed interval

[a, b] = {x ∈ R : a ⩽ x ⩽ b}

is a closed set, because its complement R\[a, b] = (−∞, a) ∪ (b, ∞) is an open set.
2. Infinite intervals with closed boundary [a, ∞) and (−∞, b] are closed sets.
3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.
• If U ⊆ Rn is open and C ⊆ Rn is closed then U\C is open.
• If C ⊆ Rn is closed and U ⊆ Rn is open then C\U is closed.

Proposition 1.2.
• If U1, . . . , Uk ⊆ Rn are open then U1 ∪ . . . ∪ Uk and U1 ∩ . . . ∩ Uk are open.
• If C1, . . . , Ck ⊆ Rn are closed then C1 ∪ . . . ∪ Ck and C1 ∩ . . . ∩ Ck are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.
Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of Rn and x
a point in Rn.

(i) We call x an interior point of S if there exists r > 0 such that the ball B(x, r)
is contained in S.

(ii) We call x an exterior point of S if there exists r > 0 such that the ball B(x, r)
has empty intersection with S.

(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r > 0 the ball
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B(x, r) has non-empty intersection with S without being entirely contained in
S.

Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.
Definition 1.8 (Interior). The set of all interior points of a set S is called the interior
of S and it is denoted by S̊.
Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use ∂S to denote it.
Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x ∈ Rn

with the property that for all r > 0 one has

B(x, r) ∩ S ̸= ∅.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

Figure 1.2: The interior, closure and boundary sets of a set S.

Clearly, we have the set inclusions S̊ ⊆ S ⊆ S. To summarize, the closure of S
is S plus its boundary, its interior is S minus its boundary, and the boundary is the
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closure minus the interior:

S̊ = S\∂S S = S ∪ ∂S, and ∂S = S \S̊.

Proposition 1.3. Let S ⊆ Rn. The interior S̊ is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.

Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Example 1.3 (Closure, Interior, Boundary).
1. The sets (0, 1), [0, 1], [0, 1), and (0, 1] all have the same closure, interior, and bound-

ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(x, y) ∈ R2 : x2 + y2 < 1} and {(x, y) ∈ R2 : x2 + y2 ⩽ 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation x2 + y2 ⩽ 1, the interior is the disc of equation x2 + y2 < 1, and the
boundary is the circle of equation x2 + y2 = 1.

3. The set

U = {(x, y) ∈ R2 : |y| < x2}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = Ů . The closure of U is given by

U = {(x, y) ∈ R2 : |y| ⩽ x2}.

In particular, the closure contains the point (0, 0).

Figure 1.3: The origin belongs to the closure of the shaded region.
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4. The unit ball is open in Rn and is defined by

B1 = B(0, 1) = {x ∈ Rn : ∥x∥2 < 1}

Its boundary is the sphere ∂B1 = {x ∈ Rn : ∥x∥2 = 1}.
5. Let f : R → R be a continuous function. The set

Gf = {(x, f(x)) ∈ R2 : x ∈ R}

is known as the graph of f and represents a curve in R2. We have G̊f = ∅. Therefore
Gf = ∂Gf . The closed graph theorem says that graph G̊f is a closed set in R2 if f
is a continuous function.

6. Let B = {x ∈ R2 : ∥x∥2 < 1} and I = [0, 5]. The set S defined by

S = B × I =
{
x ∈ R3 : x2

1 + x2
2 < 1 and 0 ⩽ x3 ⩽ 5

}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by

∂S = ∂B × I︸ ︷︷ ︸
E1

∪ B × ∂I︸ ︷︷ ︸
E2

,

where

E1 =
{
x ∈ R3 : x2

1 + x2
2 = 1 and 0 ⩽ x3 ⩽ 5

}
,

E2 =
{
x ∈ R3 : x2

1 + x2
2 < 1 and x3 ∈ {0, 5}

}
.

Definition 1.11 (Neighborhood of a point in Rn). Let x ∈ Rn and U ⊆ Rn. If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in Rn

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1, 2, 3, . . .} for the set of natural numbers.

Definition 1.12 (Sequences in Rn). A sequence of elements of Rn is a function k 7→ xk

that associates to every natural number k ∈ N an element xk ∈ Rn. We write (xk)k∈N
to denote a sequence in Rn.

Although (xk)k∈N is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 .

Definition 1.13 (Convergent sequence). A sequence (xk)k∈N of points in Rn converges
to a point x ∈ Rn if for every ε > 0 there exists N > 1 such that when k ⩾ N , then
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d (xk, x) < ε. In this case we call x the limit of (xk)k∈N and write

lim
k→+∞

xk = x.

Note that not every sequence has a limit, but if a sequence does then this limit is
unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xk)k∈N converges to x if and only
if the sequence of distances d (xk, x) converges to 0, i.e.,

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

d (xk, x) = 0.

Convergence is also observed coordinate wise: A sequence (xk)k∈N converges to x if
and only if each coordinate of (xk)k∈N converges to the respective coordinate of x.
More precisely, if

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 and x =


x1
...

xn


then

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

xi,k = xi for all i = 1, . . . , n.

Example 1.4 (Convergent and divergent sequences in Rn).
1. The sequence (xk)k∈N given by

xk =

 e−k

k
k+1

1√
k2−k−k


converges as k → +∞ to the limit

x =

 0
1

−2

 ,

because limk→+∞ e−k = 0, limk→+∞
k

k+1 = 1, and limk→+∞
1√

k2−k−k
= −2.

2. The sequence (xk)k∈N given by

xk =
(

0
1−(−1)k

2

)

diverges because it diverges in the second coordinate.
The following properties describe the arithmetic operations of sequences in the n-

dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of Rn. Let (xk)k∈N and (yk)k∈N be sequences in Rn and let (λk)k∈N be
a sequence in R.
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1. Addition of sequences: If (xk)k∈N and (yk)k∈N both converge then so does
(xk + yk)k∈N and

lim
k→+∞

xk + yk = lim
k→+∞

xk + lim
k→+∞

yk.

2. Multiplication of sequences: If (xk)k∈N and (λk)k∈N both converge then so
does (λkxk)k∈N and

lim
k→+∞

λkxk =
(

lim
k→+∞

λk

)
·
(

lim
k→+∞

xk

)
.

3. Inner product of sequences: If (xk)k∈N and (yk)k∈N both converge then so
does (⟨xk, yk⟩)k∈N and

lim
k→+∞

⟨xk, yk⟩ =
〈

lim
k→+∞

xk, lim
k→+∞

yk

〉
.

Definition 1.14 (Cauchy sequences). A sequence (xk)k∈N is a Cauchy sequence if for
every ε > 0 there exists N > 1 such that k, l ⩾ N implies d (xk, xl) < ε.

Theorem 1.1. Every convergent sequence (xk)k∈N is a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S ⊆ Rn be a non-empty set and suppose x ∈ ∂S is a boundary
point of S. Then there exists a sequence of elements in S̊, x1, x2, x3, . . . ∈ S̊, such that

lim
k→+∞

xk = x.

The following example provides an illustration of the content of Proposition 1.4.
Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,

B(0, 5) = {x ∈ R2 : ∥x∥2 < 5} = {(x, y) ∈ R2 : x2 + y2 < 25}.

The boundary of B((0, 0), 5) is the circle of radius 5 centered at the origin, i.e.,

∂B(0, 5) = {x ∈ R2 : ∥x∥2 = 5} = {(x, y) ∈ R2 : x2 + y2 = 25}.

Any point x ∈ ∂B(0, 5) of this circle takes the form

x =
(

5 cos θ
5 sin θ

)
, for some θ ∈ [0, 2π).

We can define a sequence

xk =
( 5k

k+1 cos θ
5k

k+1 sin θ

)
,

and note that limk→+∞ xk = x. So we see that x1, x2, x3, . . . is a sequence of points
inside the open ball B(0, 5) converging to the point x on the border .

Proposition 1.5. Let S ⊆ Rn be a non-empty subset of Rn and let (xk)k∈N be a
sequence of elements in S. If (xk)k∈N converges then the limit limk→+∞ xk = x must
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belong to S, the closure of S.

Example 1.6. Consider the “halfopen” rectangle

S = [0, 1] × [0, 1).

This is not a closed set, because the point (2
3 , 1), for example, is in the boundary ∂S

but not in S itself. Moreover, the sequence(
2
3
1
2

)
,

(
2
3
2
3

)
,

(
2
3
3
4

)
,

(
2
3
4
5

)
,

(
2
3
5
6

)
, . . .

is a sequence of points in the interior of S that converge to the point (2
3 , 1), which is

not part of S, but it is part of the closure of S.
Definition 1.15 (Bounded set). A subset E ⊆ Rn is bounded if it is contained in a
ball of finite radius centered at the origin:

E ⊆ B(0, R) for some R < ∞.

Note that a closed set need not be bounded. For instance, the interval [0, ∞) is
closed, but it is not a bounded.
Definition 1.16 (Compact set). A subset C ⊆ Rn is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of Rn. An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.
Definition 1.17 (Subsequence). A subsequence of a sequence (xk)k∈N is any sequence
of the form (xki

)i∈N, where (ki)i∈N is a strictly increasing sequence of positive integers.
If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in Rn). Let C ⊆ Rn be compact. Any
sequence (xk)k∈N of elements in C possesses a convergent subsequence (xki

)i∈N whose
limit is in C.

Definition 1.18 (Bounded sequences in Rn). A sequence (xk)k∈N is bounded if there
exists a constant C > 0 such that ∥xk∥2 ⩽ C for any k ∈ N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence xk = (−1)k is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (xk)k∈N in Rn has a convergent subsequence
(xki

)i∈N.
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